# Everything is Illuminated (Except for at Most Finitely Many Points)

Suppose a light source is placed in a polygonal hall of mirrors (so light can bounce off the walls). Does every point in the room get illuminated? This elementary geometrical question was open from the 1950s until Tokarsky (1995) found an example of a polygonal room in which there are two points which do not illuminate each other. Resolving a conjecture of Hubert-Schmoll-Troubetzkoy, in joint work with Lelievre and Monteil we prove that if the angles between walls is rational, every point illuminates all but at most finitely many other points. The proof is based on recent work by Eskin, Mirzakhani and Mohammadi in the ergodic theory of the SL(2,R) action on the moduli space of translation surfaces. The talk will serve as a gentle introduction to the amazing results of Eskin, Mirzakhani and Mohammadi.

- Last modified: 18/03/2015