

The weight, density and Lindelöf number in spaces and topological groups  
Mikhail G. Tkachenko  
Metropolitan Autonomous University, Mexico City

It is well known that every *regular* space  $X$  satisfies  $w(X) \leq 2^{d(X)}$ , where  $w(X)$  and  $d(X)$  are the weight and density of  $X$ , respectively. For Tychonoff spaces, W. Comfort and A. Hager established a sharper result. They proved that the number of continuous real-valued functions on a Tychonoff space  $X$ , say  $C(X)$ , satisfies  $w(X) \leq |C(X)| \leq w(X)^{wl(X)}$ , where  $wl(X)$  is the *weak Lindelöf number* of  $X$ . Notice that  $w(X)^{wl(X)} \leq 2^{d(X)}$  for every *regular* space  $X$ .

We present new upper bounds for the weight of spaces and topological groups which contain a dense Lindelöf  $\Sigma$ -subspace. One of our principal results states that if  $Y$  is a dense subspace of a Tychonoff space  $X$ , then  $w(X) \leq |C(X)| \leq nw(Y)^{Nag(Y)}$ , where  $Nag(Y)$  is the *Nagami number* of  $Y$ . In particular, if a regular Lindelöf  $\Sigma$ -space  $X$  satisfies  $nw(X) = \kappa^\omega$  for some  $\kappa \geq \omega$ , then  $w(X) = nw(X)$  and  $w(X) = w(\beta X) = |C(X)| = \kappa^\omega$ . Therefore, the cardinality of  $C(X)$  is completely defined by the weight of  $X$  in this case.

The upper bounds for the weight of topological groups are even better. We show that if a Lindelöf  $\Sigma$ -group  $G$  is a dense subgroup of a topological group  $H$ , then  $w(H) = w(G) \leq \psi(G)^\omega$ . Similarly, if a Lindelöf  $\Sigma$ -space  $X$  generates a dense subgroup of a topological group  $H$ , then  $w(H) \leq 2^{\psi(X)}$ .