On summability methods for Fourier series and Fourier integrals
Seminar
Speaker
Prof. R. Trigub, Donetsk National University, Ukraine
Date
13/04/2015 - 15:00 - 14:00Add to Calendar
2015-04-13 14:00:00
2015-04-13 15:00:00
On summability methods for Fourier series and Fourier integrals
In the problem of summability at a point at which the derivative of indefinite
integral exists for Fourier series and Fourier integrals of integrable functions
a new sufficient condition is obtained. In the case of "arithmetic means" the
corresponding condition is also necessary.
Exact rates of approximation by the classical Gauss-Weierstrass, Bochner-Riesz,
and Marcinkiewicz-Riesz means, as well as by non-classical Bernstein-Stechkin means
are found.
These problems are related to the representability of a function as an absolutely
convergent Fourier integral. For this, new conditions are obtained, while for radial functions
even a criterion.
2nd floor Colloquium Room, Building 216
אוניברסיטת בר-אילן - Department of Mathematics
mathoffice@math.biu.ac.il
Asia/Jerusalem
public
Place
2nd floor Colloquium Room, Building 216
Abstract
In the problem of summability at a point at which the derivative of indefinite
integral exists for Fourier series and Fourier integrals of integrable functions
a new sufficient condition is obtained. In the case of "arithmetic means" the
corresponding condition is also necessary.
Exact rates of approximation by the classical Gauss-Weierstrass, Bochner-Riesz,
and Marcinkiewicz-Riesz means, as well as by non-classical Bernstein-Stechkin means
are found.
These problems are related to the representability of a function as an absolutely
convergent Fourier integral. For this, new conditions are obtained, while for radial functions
even a criterion.
Last Updated Date : 13/04/2015