Infinitesimal Hilbert 16th problem
Seminar
Speaker
Prof. S. Yakovenko, Weizmann Institute
Date
20/04/2015 - 15:00 - 14:00Add to Calendar
2015-04-20 14:00:00
2015-04-20 15:00:00
Infinitesimal Hilbert 16th problem
I will describe the current state of affairs in both the original Hilbert 16th problem
(on limit cycles of polynomial planar vector fields) and its relaxed version on zeros of
Abelian integrals. It turns out that the latter belong to a natural class of Q-functions
described by integrable systems of linear differential equations with quasiunipotent monodromy,
defined over the field of rational numbers. Functions of this class admit explicit (albeit very
excessive) bounds for the number of their isolated zeros in a way similar to algebraic functions.
This result lies at the core of the solution of the infinitesimal Hilbert problem, achieved with
Gal Binyamini and Dmitry Novikov.
The talk is aimed at a broad audience.
2nd floor Colloquium Room, Building 216
אוניברסיטת בר-אילן - Department of Mathematics
mathoffice@math.biu.ac.il
Asia/Jerusalem
public
Place
2nd floor Colloquium Room, Building 216
Abstract
I will describe the current state of affairs in both the original Hilbert 16th problem
(on limit cycles of polynomial planar vector fields) and its relaxed version on zeros of
Abelian integrals. It turns out that the latter belong to a natural class of Q-functions
described by integrable systems of linear differential equations with quasiunipotent monodromy,
defined over the field of rational numbers. Functions of this class admit explicit (albeit very
excessive) bounds for the number of their isolated zeros in a way similar to algebraic functions.
This result lies at the core of the solution of the infinitesimal Hilbert problem, achieved with
Gal Binyamini and Dmitry Novikov.
The talk is aimed at a broad audience.
Last Updated Date : 25/05/2015