Characterizing sigma-scattered linear orders, part 2
Seminar
Speaker
William Chen (BGU)
Date
26/01/2017 - 12:00 - 10:00Add to Calendar
2017-01-26 10:00:00
2017-01-26 12:00:00
Characterizing sigma-scattered linear orders, part 2
This is an expository presentation following the paper "Minimality of non $\sigma$-scattered orders" by Ishiu and Moore. In the first part of the talk we will introduce the invariant $\Omega(L)$ of a linear order $L$, and characterize $\sigma$-scattered linear orders in terms of this invariant. In the second part, we will prove under the forcing axiom $\mathsf{PFA}^+$ that any linear order which is minimal with respect to embedding among the non $\sigma$-scattered orders must be either a real or Aronszajn type.
seminar room
אוניברסיטת בר-אילן - Department of Mathematics
mathoffice@math.biu.ac.il
Asia/Jerusalem
public
Place
seminar room
Abstract
This is an expository presentation following the paper "Minimality of non $\sigma$-scattered orders" by Ishiu and Moore. In the first part of the talk we will introduce the invariant $\Omega(L)$ of a linear order $L$, and characterize $\sigma$-scattered linear orders in terms of this invariant. In the second part, we will prove under the forcing axiom $\mathsf{PFA}^+$ that any linear order which is minimal with respect to embedding among the non $\sigma$-scattered orders must be either a real or Aronszajn type.
Last Updated Date : 28/10/2019