S spaces and L spaces, part 2
Seminar
Speaker
Roy Shalev (BIU)
Date
23/12/2020 - 16:00 - 14:00Add to Calendar
2020-12-23 14:00:00
2020-12-23 16:00:00
S spaces and L spaces, part 2
We introduce a new combinatorial principle which we call ♣_AD. This principle asserts the existence of a certain multi-ladder system with guessing and almost-disjointness features, and is shown to be sufficient for carrying out de Caux type constructions of topological spaces.
Our main result states that strong instances of ♣_AD follow from the existence of a Souslin tree. As an application, we obtain a simple, de Caux type proof of Rudin’s result that if there is a Souslin tree, then there is an S-space which is Dowker.
zoom
אוניברסיטת בר-אילן - Department of Mathematics
mathoffice@math.biu.ac.il
Asia/Jerusalem
public
Place
zoom
Abstract
We introduce a new combinatorial principle which we call ♣_AD. This principle asserts the existence of a certain multi-ladder system with guessing and almost-disjointness features, and is shown to be sufficient for carrying out de Caux type constructions of topological spaces.
Our main result states that strong instances of ♣_AD follow from the existence of a Souslin tree. As an application, we obtain a simple, de Caux type proof of Rudin’s result that if there is a Souslin tree, then there is an S-space which is Dowker.
Our main result states that strong instances of ♣_AD follow from the existence of a Souslin tree. As an application, we obtain a simple, de Caux type proof of Rudin’s result that if there is a Souslin tree, then there is an S-space which is Dowker.
Last Updated Date : 21/12/2020