The BCFW triangulation of the amplituhedron
Seminar
Speaker
Chaim Even-Zohar (Technion)
Date
24/04/2022 - 16:00 - 14:30Add to Calendar
2022-04-24 14:30:00
2022-04-24 16:00:00
The BCFW triangulation of the amplituhedron
The amplituhedron A(n,k,m) is a geometric object, discovered by Arkani-Hamed and Trnka (2013) in the study of scattering amplitudes in quantum field theories. They conjectured that A(n,k,4) admits a decomposition based on a certain combinatorial structure. The components are images of BCFW positroid cells of the Grassmannian Gr(k,n), which arise from the Britto–Cachazo–Feng–Witten recurrence (2005).
In a recent paper with Tsviqa Lakrec and Ran Tessler, we prove this conjecture. In the talk, I will review the amplituhedron, its BCFW triangulation, and the main ideas of the proof.
Joint work with Tsviqa Lakrec and Ran Tessler.
Room 216/201 and also Zoom
אוניברסיטת בר-אילן - Department of Mathematics
mathoffice@math.biu.ac.il
Asia/Jerusalem
public
Place
Room 216/201 and also Zoom
Abstract
The amplituhedron A(n,k,m) is a geometric object, discovered by Arkani-Hamed and Trnka (2013) in the study of scattering amplitudes in quantum field theories. They conjectured that A(n,k,4) admits a decomposition based on a certain combinatorial structure. The components are images of BCFW positroid cells of the Grassmannian Gr(k,n), which arise from the Britto–Cachazo–Feng–Witten recurrence (2005).
In a recent paper with Tsviqa Lakrec and Ran Tessler, we prove this conjecture. In the talk, I will review the amplituhedron, its BCFW triangulation, and the main ideas of the proof.
Joint work with Tsviqa Lakrec and Ran Tessler.
Last Updated Date : 15/04/2022