Semiassociative algebras over a field

Seminar
Speaker
Guy Blachar (Bar-Ilan University)
Date
10/01/2024 - 11:30 - 10:30Add to Calendar 2024-01-10 10:30:00 2024-01-10 11:30:00 Semiassociative algebras over a field Associative central simple algebras are a classical subject, related to many areas of study including Galois cohomology and algebraic geometry. An associative central simple algebra is a form of matrices because a maximal étale subalgebra acts on the algebra faithfully by left and right multiplication. In an attempt to extract and isolate the full potential of this point of view, we study nonassociative algebras whose nucleus contains an étale subalgebra bi-acting faithfully on the algebra. We show that these algebras, termed semiassociative, are forms of a nonassociative analogue of matrix algebras. Finally, we consider the monoid composed of semiassociative algebras modulo the nonassociative matrix algebras, and discuss its connection to the classical Brauer group. Joint work with Darrell Haile, Eliyahu Matzri, Edan Rein and Uzi Vishne. ================================================ https://us02web.zoom.us/j/87856132062 Meeting ID: 878 5613 2062 Third floor seminar room, Mathematics building, and on Zoom. See link below. אוניברסיטת בר-אילן - Department of Mathematics mathoffice@math.biu.ac.il Asia/Jerusalem public
Place
Third floor seminar room, Mathematics building, and on Zoom. See link below.
Abstract

Associative central simple algebras are a classical subject, related to many areas of study including Galois cohomology and algebraic geometry. An associative central simple algebra is a form of matrices because a maximal étale subalgebra acts on the algebra faithfully by left and right multiplication. In an attempt to extract and isolate the full potential of this point of view, we study nonassociative algebras whose nucleus contains an étale subalgebra bi-acting faithfully on the algebra. We show that these algebras, termed semiassociative, are forms of a nonassociative analogue of matrix algebras. Finally, we consider the monoid composed of semiassociative algebras modulo the nonassociative matrix algebras, and discuss its connection to the classical Brauer group.
Joint work with Darrell Haile, Eliyahu Matzri, Edan Rein and Uzi Vishne.

================================================

https://us02web.zoom.us/j/87856132062

Meeting ID: 878 5613 2062

Last Updated Date : 01/01/2024