An $L^2$ identity and pinned distance problem

Seminar
Speaker
Dr. Bochen Liu, Bar-Ilan University
Date
09/04/2018 - 15:35 - 14:00Add to Calendar 2018-04-09 14:00:00 2018-04-09 15:35:00 An $L^2$ identity and pinned distance problem Given a measure on a subset of Euclidean spaces. The $L^2$ spherical averages of the Fourier transform of this measure was originally used to attack Falconer distance conjecture, via Mattila’s integral. In this talk, we will consider pinned distance problem, a stronger version of Falconer distance problem, and show that spherical averages imply the same dimensional threshold on both problems. In particular, with the best known spherical averaging estimates, we improve a result of Peres and Schlag on pinned distance problem significantly. The idea is to reduce the pinned distance problem to an integral where spherical averages apply. The key new ingredient is an identity between square functions. 2nd floor Colloquium Room, Building 216 אוניברסיטת בר-אילן - Department of Mathematics mathoffice@math.biu.ac.il Asia/Jerusalem public
Place
2nd floor Colloquium Room, Building 216
Abstract

Given a measure on a subset of Euclidean spaces. The $L^2$ spherical averages of the Fourier transform of this measure was originally used to attack Falconer distance conjecture, via Mattila’s integral. In this talk, we will consider pinned distance problem, a stronger version of Falconer distance problem, and show that spherical averages imply the same dimensional threshold on both problems. In particular, with the best known spherical averaging estimates, we improve a result of Peres and Schlag on pinned distance problem significantly. The idea is to reduce the pinned distance problem to an integral where spherical averages apply. The key new ingredient is an identity between square functions.

Last Updated Date : 09/04/2018