Structure of degenerate principal series of exceptional groups

Wed, 12/12/2018 - 10:30

The reducibility and structure of parabolic inductions is a basic problem in the representation theory of p-adic groups.  Of particular interest are principal series and degenerate principal series representations, that is parabolic induction of 1-dimensional representations of Levi subgroups.


In this talk, I will start by describing the functor of normalized induction and its left adjoint, the Jacquet functor, and by going through several examples in the group SL_4(Q_p) will describe an algorithm which can be used to determine reducibility of such representations.

This algorithm is the core of a joint project with Hezi Halawi, in which we study the structure of degenerate principal series of exceptional groups of type En (see