When Ramsey's theorem fails

Seminar
Speaker
אסף רינות
Date
14/10/2013 - 10:00Add to Calendar 2013-10-14 10:00:00 2013-10-14 10:00:00 When Ramsey's theorem fails במפגש הראשון דנו במשפט רמזי הסופי והאינסופי, ובדוגמא של שרפינסקי המראה כי ההכללה המתבקשת למקרה שאיננו בן מניה - איננה נכונה. דיברנו על סוגי צביעות המעידות על כשלון תופעות מסוג רמזי, ועל הגרסא האולטימטיבית של "צביעה חזקה", כמו גם, גרסאות אסימטריות.   דיברנו על שמורות מונים של מרחבים טופולוגיים, והשוונו בין המושגים: "בן מניה שתיים", "ספרבילי" ו"לינדלוף". הזכרנו שהמושגים שקולים בהקשר של מרחבים מטריים, ובחרנו להתמקד במקרה של מרחבים רגולריים. רמזנו שצביעות חזקות מאפשרות להגדיר מרחבים רגולריים המקיימים תכונה אחת, ולא את השניה: למשל מרחב רגולרי ספרבילי תורשתית, שאיננו לינדלוף. מנגד, הזכרנו כי הטענה כי "כל מרחב רגולרי ספרבילי תורשתית הוא לינדלוף" מתיישבת עם האקסיומות הרגילות של תורת הקבוצות. אוניברסיטת בר-אילן - המחלקה למתמטיקה mathoffice@math.biu.ac.il Asia/Jerusalem public
Abstract

במפגש הראשון דנו במשפט רמזי הסופי והאינסופי, ובדוגמא של שרפינסקי המראה כי ההכללה המתבקשת למקרה שאיננו בן מניה - איננה נכונה. דיברנו על סוגי צביעות המעידות על כשלון תופעות מסוג רמזי, ועל הגרסא האולטימטיבית של "צביעה חזקה", כמו גם, גרסאות אסימטריות.

 

דיברנו על שמורות מונים של מרחבים טופולוגיים, והשוונו בין המושגים: "בן מניה שתיים", "ספרבילי" ו"לינדלוף". הזכרנו שהמושגים שקולים בהקשר של מרחבים מטריים, ובחרנו להתמקד במקרה של מרחבים רגולריים. רמזנו שצביעות חזקות מאפשרות להגדיר מרחבים רגולריים המקיימים תכונה אחת, ולא את השניה: למשל מרחב רגולרי ספרבילי תורשתית, שאיננו לינדלוף. מנגד, הזכרנו כי הטענה כי "כל מרחב רגולרי ספרבילי תורשתית הוא לינדלוף" מתיישבת עם האקסיומות הרגילות של תורת הקבוצות.

תאריך עדכון אחרון : 12/11/2013