Partition relations and generalized scattered orders
The class of scattered linear orders, isolated by Hausdorff, plays a prominent role in the study of general linear orders. In 2006, Dzamonja and Thompson introduced classes of orders generalizing the class of scattered orders. For a regular cardinal kappa, they defined the classes of kappa-scattered and weakly kappa-scattered linear orders. For kappa = omega, these two classes coincide and are equal to the classical class of scattered orders. For larger values of kappa, though, the two classes are provably different. In this talk, we will investigate properties of these generalized scattered orders with respect to partition relations, in particular the extent to which the classes of kappa-scattered or weakly kappa-scattered linear orders of size kappa are closed under partition relations of the form tau -> (phi, n) for n < omega. We will show that, assuming kappa^{<kappa} = kappa, the class of weakly kappa-scattered orders is closed under all such partition relations while, for uncountable values of kappa, the class of kappa-scattered orders consistently fails to be closed. Along the way, we will prove a generalization of the Milner-Rado paradox and look at some results regarding ordinal partition relations. This is joint work with Thilo Weinert.
תאריך עדכון אחרון : 25/03/2017