Differential equations and algebraic points on transcendental varieties

Speaker
Gal Binyamini
Date
23/04/2017 - 15:00 - 14:00Add to Calendar 2017-04-23 14:00:00 2017-04-23 15:00:00 Differential equations and algebraic points on transcendental varieties The problem of bounding the number of rational or algebraic points of a given height in a transcendental set has a long history. In 2006 Pila and Wilkie made fundamental progress in this area by establishing a sub-polynomial asymptotic estimate for a very wide class of transcendental sets. This result plays a key role in Pila-Zannier's proof of the Manin-Mumford conjecture, Pila's proof of the Andre-Oort conjecture for modular curves, Masser-Zannier's work on torsion anomalous points in elliptic families, and many more recent developments. I will briefly sketch the Pila-Wilkie theorem and the way it enters into the arithmetic applications. I will then discuss recent work on an effective form of the Pila-Wilkie theorem (for certain sets) which leads to effective versions of many of the applications. I will also discuss a joint work with Dmitry Novikov on sharpening the asymptotic from sub-polynomial to poly-logarithmic for certain structures, leading to a proof of the restricted Wilkie conjecture. The structure of the systems of differential equations satisfied by various transcendental functions plays a key role for both of these directions. Colloquium Room אוניברסיטת בר-אילן - המחלקה למתמטיקה mathoffice@math.biu.ac.il Asia/Jerusalem public
Place
Colloquium Room
Abstract
The problem of bounding the number of rational or algebraic points of a given height in a transcendental set has a long history. In 2006 Pila and Wilkie made fundamental progress in this area by establishing a sub-polynomial asymptotic estimate for a very wide class of transcendental sets. This result plays a key role in Pila-Zannier's proof of the Manin-Mumford conjecture, Pila's proof of the Andre-Oort conjecture for modular curves, Masser-Zannier's work on torsion anomalous points in elliptic families, and many more recent developments.
I will briefly sketch the Pila-Wilkie theorem and the way it enters into the arithmetic applications. I will then discuss recent work on an effective form of the Pila-Wilkie theorem (for certain sets) which leads to effective versions of many of the applications. I will also discuss a joint work with Dmitry Novikov on sharpening the asymptotic from sub-polynomial to poly-logarithmic for certain structures, leading to a proof of the restricted Wilkie conjecture. The structure of the systems of differential equations satisfied by various transcendental functions plays a key role for both of these directions.

תאריך עדכון אחרון : 20/04/2017