Mappings with integrally controlled $p$-moduli

שלחו לחבר
Prof. A. Golberg, Holon Institute of Technology
14/03/2016 - 16:00 - 14:00
2nd floor Colloquium Room, Building 216
We consider classes of mappings (with controlled moduli) whose $p$-module of the families of curves/surfaces
is restricted by integrals containing measurable functions and arbitrary admissible metrics. In the talk we
discuss various properties of mappings with controlled moduli including their differential features (Lusin's
$N-$ and  $N^{-1}$-conditions, Jacobian bounds, estimates for distortion dilatations, H\"older/logarithmically
H\"older continuity) and the topological structure (openness, discreteness, invertibility, finiteness of the
multiplicity function). This allows us to investigate the interconnection between mappings of bounded and finite
distortion defined analytically and mapping with controlled moduli having no analytic assumptions.