Quadratic Chabauty and beyond
I will describe my work (some joint with I. Dan-Cohen) to extend the computational boundary of Kim's non-abelian Chabauty's method beyond the highly-studied Quadratic Chabauty. Faltings' Theorem says that the number of rational points on curves of higher genus is finite, and non-abelian Chabauty provides a blueprint both for proving this finiteness and for computing the sets of rational points. We first review classical Chabauty-Coleman, which does the same but works only for certain curves. Then we describe Kim's non-abelian generalization, which replaces abelian varieties in Chabauty-Coleman by Selmer groups (a kind of Galois cohomology) and eventually "non-abelian" Selmer varieties. Finally, we describe recent work in attempting to compute these sets using the theory of Tannakian categories.
================================================
https://us02web.zoom.us/j/87856132062
Meeting ID: 878 5613 2062
תאריך עדכון אחרון : 12/12/2021